*** Welcome to piglix ***

Pulsar timing


Any planet is an extremely faint light source compared to its parent star. For example, a star like the Sun is about a billion times as bright as the reflected light from any of the planets orbiting it. In addition to the intrinsic difficulty of detecting such a faint light source, the light from the parent star causes a glare that washes it out. For those reasons, very few of the extrasolar planets reported as of April 2014 have been observed directly, with even fewer being resolved from their host star.

Instead, astronomers have generally had to resort to indirect methods to detect extrasolar planets. As of 2016, several different indirect methods have yielded success.

The following methods have at least once proved successful for discovering a new planet or detecting an already discovered planet:

A star with a planet will move in its own small orbit in response to the planet's gravity. This leads to variations in the speed with which the star moves toward or away from Earth, i.e. the variations are in the radial velocity of the star with respect to Earth. The radial velocity can be deduced from the displacement in the parent star's spectral lines due to the Doppler effect. The radial-velocity method measures these variations in order to confirm the presence of the planet using the binary mass function.

The speed of the star around the system's center of mass is much smaller than that of the planet, because the radius of its orbit around the center of mass is so small. (For example, the Sun moves by about 13 m/s due to Jupiter, but only about 12 cm/s due to Earth). However, velocity variations down to 1 m/s or even somewhat less can be detected with modern spectrometers, such as the HARPS (High Accuracy Radial Velocity Planet Searcher) spectrometer at the ESO 3.6 meter telescope in La Silla Observatory, Chile, or the HIRES spectrometer at the Keck telescopes. An especially simple and inexpensive method for measuring radial velocity is "externally dispersed interferometry".


...
Wikipedia

...