A pulmonary shunt is a pathological condition which results when the alveoli of the lungs are perfused with blood as normal, but ventilation (the supply of air) fails to supply the perfused region. In other words, the ventilation/perfusion ratio (the ratio of air reaching the alveoli to blood perfusing them) is zero. A pulmonary shunt often occurs when the alveoli fill with fluid, causing parts of the lung to be unventilated although they are still perfused.
Intrapulmonary shunting is the main cause of hypoxemia (inadequate blood oxygen) in pulmonary edema and conditions such as pneumonia in which the lungs become consolidated. The shunt fraction is the percentage of blood put out by the heart that is not completely oxygenated.
In pathological conditions such as pulmonary contusion, the shunt fraction is significantly greater and even breathing 100% oxygen does not fully oxygenate the blood.
A small degree of shunt is normal and may be described as an 'anatomical shunt'. Anatomical shunting occurs when too much of the blood supplying the lung tissues via the bronchial arteries is being returned via the pulmonary veins without undergoing gas exchange. In addition, some of the coronary veins drain directly into the left ventricle of the human heart. This is why the arterial PO2 is slightly lower than the alveolar PO2.
Shunt refers to perfusion without ventilation. More specifically, intrapulmonary shunt refers to areas in the lung where perfusion exceeds ventilation.
Pulmonary shunting is minimized by the normal reflex constriction of pulmonary vasculature to hypoxia. Without this hypoxic pulmonary vasoconstriction, shunt and its hypoxic effects would worsen. For example, when alveoli fill with fluid, they are unable to participate in gas exchange with blood, causing local or regional hypoxia, thus triggering vasoconstriction. Blood is then redirected away from this area, which poorly matches ventilation and perfusion, to areas which are being ventilated.