In mathematics, a pullback bundle or induced bundle is the fiber bundle that is induced by a map of its base-space. Given a fiber bundle π : E → B and a continuous map f : B′ → B one can define a "pullback" of E by f as a bundle f*E over B′. The fiber of f*E over a point b′ in B′ is just the fiber of E over f(b′). Thus f*E is the disjoint union of all these fibers equipped with a suitable topology.
Let π : E → B be a fiber bundle with abstract fiber F and let f : B′ → B be a continuous map. Define the pullback bundle by
and equip it with the subspace topology and the projection map π′ : f*E → B′ given by the projection onto the first factor, i.e.,
The projection onto the second factor gives a map
such that the following diagram commutes:
If (U, φ) is a local trivialization of E then (f−1U, ψ) is a local trivialization of f*E where
It then follows that f*E is a fiber bundle over B′ with fiber F. The bundle f*E is called the pullback of E by f or the bundle induced by f. The map g is then a bundle morphism covering f.