In mathematics, the pseudoisotopy theorem is a theorem of Jean Cerf 's which refers to the connectivity of a group of diffeomorphisms of a manifold.
Given a differentiable manifold M (with or without boundary), a pseudo-isotopy diffeomorphism of M is a diffeomorphism of M × [0, 1] which restricts to the identity on .
Given a pseudo-isotopy diffeomorphism, its restriction to is a diffeomorphism of M. We say g is pseudo-isotopic to the identity. One should think of a pseudo-isotopy as something that is almost an isotopy—the obstruction to ƒ being an isotopy of g to the identity is whether or not ƒ preserves the level-sets for .