Pseudo-random number sampling or non-uniform pseudo-random variate generation is the numerical practice of generating pseudo-random numbers that are distributed according to a given probability distribution.
Methods of sampling a non-uniform distribution are typically based on the availability of a pseudo-random number generator producing numbers X that are uniformly distributed. Computational algorithms are then used to manipulate a single random variate, X, or often several such variates, into a new random variate Y such that these values have the required distribution.
Historically, basic methods of pseudo-random number sampling were developed for Monte-Carlo simulations in the Manhattan project; they were first published by John von Neumann in the early 1950s.
For a discrete probability distribution with a finite number n of indices at which the probability mass function f takes non-zero values, the basic sampling algorithm is straightforward. The interval [0, 1) is divided in n intervals [0, f(1)), [f(1), f(1) + f(2)), ... The width of interval i equals the probability f(i). One draws a uniformly distributed pseudo-random number X, and searches for the index i of the corresponding interval. The so determined i will have the distribution f(i).
Formalizing this idea becomes easier by using the cumulative distribution function
It is convenient to set F(0) = 0. The n intervals are then simply [F(0), F(1)), [F(1), F(2)), ..., [F(n − 1), F(n)). The main computational task is then to determine i for which F(i − 1) ≤ X < F(i).