Pseudo-nitzschia | |
---|---|
Scientific classification | |
(unranked): | SAR |
Phylum: | Heterokontophyta |
Class: | Bacillariophyceae |
Order: | Bacillariales |
Family: | Bacillariaceae |
Genus: |
Pseudo-nitzschia H. Perag. in H. Perag. and Perag. |
Pseudo-nitzschia is a marine planktonic diatom genus containing some species capable of producing the neurotoxin domoic acid (DA), which is responsible for the neurological disorder known as amnesic shellfish poisoning. Currently, 48 species are known, 23 of which have been shown to produced DA. It was originally hypothesized that only dinoflagellates could produce harmful algal toxins, but a deadly bloom of Pseudo-nitzschia occurred in 1987 in the bays of Prince Edward Island, Canada, and led to an outbreak of ASP. Over 100 people were affected by this outbreak after consuming contaminated mussels; three people died. Blooms have since been characterized in coastal waters worldwide and have been linked to increasing marine nutrient concentrations.
Pseudo-nitzschia species are bilaterally symmetrical Pennate diatoms. Cell walls are made up of elongated silica frustules. The silica wall is fairly dense which leads to negative buoyancy, providing a number of advantages. The wall allows the diatoms to sink to avoid light inhibition or nutrient limitations, as well as to protect against grazing zooplankton. The silica frustules also contribute vastly to the sediment layers of the earth and to the fossil record, which makes them exceptionally useful in increasing understanding of numerous processes such as gauging the degree of climate change. Before sinking to the ocean floor, every atom of silicon that enters the ocean is integrated into the cell wall of a diatom about 40 times.
Silica frustules contain a central raphe, which secretes mucilage that allows the cells to move by gliding. Cells are often found in overlapped, stepped colonies, and exhibit collective motility.Pseudo-nitzschia species synthesize their own food through the use of light and nutrients in photosynthesis. The diatoms have a central vacuole to store nutrients for later use and a light-harvesting system to protect themselves against high-intensity light.
The diatom lineage may go back 180 to 250 million years ago (Mya). About 65 Mya, diatoms survived a mass extinction in which roughly 85% of all species perished. Until 1994, the genus was known as Nitzschia, but was changed to Pseudo-nitzschia because of the ability to form chains of overlapping cells, as well as other minor morphological differences. While the genus can be readily recognized using light microscopy, identification of distinct species can require taxonomic expertise and be extremely time-consuming. Species identification in this genus is notoriously difficult due to the presence of cryptic species. Similar species are often differentiated by very small differences in the frustule, such as shape, period, and band stria.