*** Welcome to piglix ***

Protein engineering


Protein engineering is the process of developing useful or valuable proteins. It is a young discipline, with much research taking place into the understanding of protein folding and recognition for protein design principles. It is also a product and services market, with an estimated value of $168 billion by 2017.

There are two general strategies for protein engineering: rational protein design and directed evolution. These methods are not mutually exclusive; researchers will often apply both. In the future, more detailed knowledge of protein structure and function, and advances in high-throughput screening, may greatly expand the abilities of protein engineering. Eventually, even unnatural amino acids may be included, via newer methods, such as expanded genetic code, that allow encoding novel amino acids in genetic code.

In rational protein design, a scientist uses detailed knowledge of the structure and function of a protein to make desired changes. In general, this has the advantage of being inexpensive and technically easy, since site-directed mutagenesis methods are well-developed. However, its major drawback is that detailed structural knowledge of a protein is often unavailable, and, even when available, it can be very difficult to predict the effects of various mutations.

Computational protein design algorithms seek to identify novel amino acid sequences that are low in energy when folded to the pre-specified target structure. While the sequence-conformation space that needs to be searched is large, the most challenging requirement for computational protein design is a fast, yet accurate, energy function that can distinguish optimal sequences from similar suboptimal ones.

In directed evolution, random mutagenesis is applied to a protein, and a selection regime is used to select variants having desired traits. Further rounds of mutation and selection are then applied. This method mimics natural evolution and, in general, produces superior results to rational design. An added process, termed DNA shuffling, mixes and matches pieces of successful variants to produce better results. Such processes mimic the recombination that occurs naturally during sexual reproduction. Advantages of directed evolution are that it requires no prior structural knowledge of a protein, nor is it necessary to be able to predict what effect a given mutation will have. Indeed, the results of directed evolution experiments are often surprising in that desired changes are often caused by mutations that were not expected to have some effect. The drawback is that they require high-throughput screening, which is not feasible for all proteins. Large amounts of recombinant DNA must be mutated and the products screened for desired traits. The large number of variants often requires expensive robotic equipment to automate the process. Further, not all desired activities can be screened for easily.


...
Wikipedia

...