*** Welcome to piglix ***

Protein Kinase A

CAMP-dependent protein kinase
Identifiers
EC number 2.7.11.11
CAS number 142008-29-5
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum

In cell biology, protein kinase A (PKA) is a family of enzymes whose activity is dependent on cellular levels of cyclic AMP (cAMP). PKA is also known as cAMP-dependent protein kinase (EC 2.7.11.11). Protein kinase A has several functions in the cell, including regulation of glycogen, sugar, and lipid metabolism.

It should not be confused with AMP-activated protein kinase – which, although being of similar nature, may have opposite effects – nor be confused with cyclin-dependent kinases (Cdks), nor be confused with the acid dissociation constant pKa.

PKA is a tetramer. The PKA holoenzyme structure consists of a regulatory subunit and catalytic subunit. Catalytic subunit contains the active site, a domain to bind ATP and a domain to bind the regulatory subunit. The regulatory subunit has domains to bind to cyclic AMP, a domain that interacts with catalytic subunit and an auto inhibitory domain. There are two major forms of regulatory subunit; RI and RII.

The PKA enzyme is also known as cAMP-dependent enzyme because it is activated only when cAMP is present. Hormones such as glucagon and epinephrine begin the activation cascade (that triggers protein kinase A) by binding to a G protein–coupled receptor (GPCR) on the target cell. When a GPCR is activated by its extracellular ligand, a conformational change is induced in the receptor that is transmitted to an attached intracellular heterotrimeric G protein complex by protein domain dynamics. The Gs alpha subunit of the stimulated G protein complex exchanges GDP for GTP and is released from the complex. The activated Gs alpha subunit binds to and activates an enzyme called adenylyl cyclase, which, in turn, catalyzes the conversion of ATP into cyclic adenosine monophosphate (cAMP) – increasing cAMP levels. Four cAMP molecules are required to activate a single PKA enzyme. This is done by two cAMP molecules binding to each of the two cAMP binding sites (CNB-B and CNB-A) which produces a conformational change in the regulatory subunits on a PKA enzyme causing the subunits to detach exposing the two (now activated) catalytic subunits. Next the catalytic subunits can go on to phosphorylate other proteins.


...
Wikipedia

...