In algebraic geometry, a projective variety over an algebraically closed field k is a subset of some projective n-space Pn over k that is the zero-locus of some finite family of homogeneous polynomials of n + 1 variables with coefficients in k, that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of Pn.
A projective variety is a projective curve if its dimension is one; it is a projective surface if its dimension is two; it is a projective hypersurface if its dimension is one less than the dimension of the containing projective projective space; in this case it is the set of zeros of a single homogeneous polynomial.
If X is a projective variety defined by a homogeneous prime ideal I, then the quotient ring
is called the homogeneous coordinate ring of X. Basic invariants of X such as the degree and the dimension can be read off the Hilbert polynomial of this graded ring.
Projective varieties arise in many ways. They are complete, which roughly can be expressed by saying that there are no points "missing". The converse is not true in general, but Chow's lemma describes the close relation of these two notions. Showing that a variety is projective is done by studying line bundles or divisors on X.