*** Welcome to piglix ***

Product form solution


In probability theory, a product-form solution is a particularly efficient form of solution for determining some metric of a system with distinct sub-components, where the metric for the collection of components can be written as a product of the metric across the different components. Using capital Pi notation a product-form solution has algebraic form

where B is some constant. Solutions of this form are of interest as they are computationally inexpensive to evaluate for large values of n. Such solutions in queueing networks are important for finding performance metrics in models of multiprogrammed and time-shared computer systems.

The first product-form solutions were found for equilibrium distributions of Markov chains. Trivially, models composed of two or more independent sub-components exhibit a product-form solution by the definition of independence. Initially the term was used in queueing networks where the sub-components would be individual queues. For example, Jackson's theorem gives the joint equilibrium distribution of an open queueing network as the product of the equilibrium distributions of the individual queues. After numerous extensions, chiefly the BCMP network it was thought local balance was a requirement for a product-form solution.

Gelenbe's G-network model was the first to show that this is not the case. Motivated by the need to model biological neurons which have a point-process like spiking behaviour, he introduced the precursor of G-Networks, calling it the random neural network. By introducing "negative customers" which can destroy or eliminate other customers, he generalised the family of product form networks. Then this was further extended in several steps, first by Gelenbe's "triggers" which are customers which have the power of moving other customers from some queue to another. Another new form of customer that also led to product form was Gelenbe's "batch removal". This was further extended by Erol Gelenbe and Jean-Michel Fourneau with customer types called "resets" which can model the repair of failures: when a queue hits the empty state, representing (for instance) a failure, the queue length can jump back or be "reset" to its steady-state distribution by an arriving reset customer, representing a repair. All these previous types of customers in G-Networks can exist in the same network, including with multiple classes, and they all together still result in the product form solution, taking us far beyond the reversible networks that had been considered before.


...
Wikipedia

...