Process mining is a process management technique that allows for the analysis of business processes based on event logs. During process mining, specialized data-mining algorithms are applied to event log datasets in order to identify trends, patterns and details contained in event logs recorded by an information system. Process mining aims to improve process efficiency and understanding of processes. Process mining is also known as Automated Business Process Discovery (ABPD).
Process mining techniques are often used when no formal description of the process can be obtained by other approaches, or when the quality of existing documentation is questionable. For example, application of process mining methodology to the audit trails of a workflow management system, the transaction logs of an enterprise resource planning system, or the electronic patient records in a hospital can result in models describing processes, organizations, and products. Event log analysis can also be used to compare event logs with prior model(s) to understand whether the observations conform to a prescriptive or descriptive model.
Contemporary management trends such as BAM (Business Activity Monitoring), BOM (Business Operations Management), and BPI (business process intelligence) illustrate the interest in supporting diagnosis functionality in the context of Business Process Management technology (e.g., Workflow Management Systems and other process-aware information systems).
Process mining follows the options established in business process engineering, then goes beyond those options by providing feedback for business process modeling: