In statistics, a probit model is a type of regression where the dependent variable can only take two values, for example married or not married. The word is a portmanteau, coming from probability + unit. The purpose of the model is to estimate the probability that an observation with particular characteristics will fall into a specific one of the categories; moreover, if estimated probabilities greater than 1/2 are treated as classifying an observation into a predicted category, the probit model is a type of binary classification model.
A probit model is a popular specification for an ordinal or a binary response model. As such it treats the same set of problems as does logistic regression using similar techniques. The probit model, which employs a probit link function, is most often estimated using the standard maximum likelihood procedure, such an estimation being called a probit regression.
Probit models were introduced by Chester Bliss in 1934; a fast method for computing maximum likelihood estimates for them was proposed by Ronald Fisher as an appendix to Bliss' work in 1935.
Suppose a response variable Y is binary, that is it can have only two possible outcomes which we will denote as 1 and 0. For example Y may represent presence/absence of a certain condition, success/failure of some device, answer yes/no on a survey, etc. We also have a vector of regressors X, which are assumed to influence the outcome Y. Specifically, we assume that the model takes the form
where Pr denotes probability, and Φ is the Cumulative Distribution Function (CDF) of the standard normal distribution. The parameters β are typically estimated by maximum likelihood.