*** Welcome to piglix ***

Principle of complementarity


In physics, complementarity is both a theoretical and an experimental result of quantum mechanics, also referred to as principle of complementarity. It holds that objects have certain pairs of complementary properties which cannot all be observed or measured simultaneously.

The complementarity principle was formulated by Niels Bohr, a leading founder of quantum mechanics. Examples of complementary properties that Bohr considered:

For example, the particle and wave aspects of physical objects are such complementary phenomena. Both concepts are borrowed from classical mechanics, where it is impossible to be a particle and wave at the same time. Therefore, it is impossible to measure the full properties of the wave and particle at a particular moment. Moreover, Bohr implies that it is not possible to regard objects governed by quantum mechanics as having intrinsic properties independent of determination with a measuring device, a viewpoint supported by the Kochen-Specker theorem. The type of measurement determines which property is shown. However the single and double-slit experiment and other experiments show that some effects of wave and particle can be measured in one measurement.

An aspect of complementarity is that it not only applies to measurability or knowability of some property of a physical entity, but more importantly it applies to the limitations of that physical entity’s very manifestation of the property in the physical world. All properties of physical entities exist only in pairs, which Bohr described as complementary or conjugate pairs. Physical reality is determined and defined by manifestations of properties which are limited by trade-offs between these complementary pairs. For example, an electron can manifest a greater and greater accuracy of its position only in even trade for a complementary loss in accuracy of manifesting its momentum. This means that there is a limitation on the precision with which an electron can possess (i.e., manifest) position, since an infinitely precise position would dictate that its manifested momentum would be infinitely imprecise, or undefined (i.e., non-manifest or not possessed), which is not possible. The ultimate limitations in precision of property manifestations are quantified by the Heisenberg uncertainty principle and Planck units. Complementarity and Uncertainty dictate that therefore all properties and actions in the physical world manifest themselves as non-deterministic to some degree.


...
Wikipedia

...