In statistics, principal component regression (PCR) is a regression analysis technique that is based on principal component analysis (PCA). Typically, it considers regressing the outcome (also known as the response or the dependent variable) on a set of covariates (also known as predictors, or explanatory variables, or independent variables) based on a standard linear regression model, but uses PCA for estimating the unknown regression coefficients in the model.
In PCR, instead of regressing the dependent variable on the explanatory variables directly, the principal components of the explanatory variables are used as regressors. One typically uses only a subset of all the principal components for regression, thus making PCR some kind of a regularized procedure. Often the principal components with higher variances (the ones based on eigenvectors corresponding to the higher eigenvalues of the sample variance-covariance matrix of the explanatory variables) are selected as regressors. However, for the purpose of predicting the outcome, the principal components with low variances may also be important, in some cases even more important.