A prime reciprocal magic square is a magic square using the decimal digits of the reciprocal of a prime number.
Consider a number divided into one, like 1/3 or 1/7. In base ten, the remainder, and so the digits, of 1/3 repeats at once: 0·3333... However, the remainders of 1/7 repeat over six, or 7-1, digits: 1/7 = 0·142857142857142857... If you examine the multiples of 1/7, you can see that each is a cyclic permutation of these six digits:
If the digits are laid out as a square, it is obvious that each row will sum to 1+4+2+8+5+7, or 27, and only slightly less obvious that each column will also do so, and consequently we have a magic square:
However, neither diagonal sums to 27, but all other prime reciprocals in base ten with maximum period of p-1 produce squares in which all rows and columns sum to the same total.
Other properties of Prime Reciprocals: Midy's theorem
The repeating pattern of an even number of digits [7-1, 11-1, 13-1, 17-1, 19-1, 29-1, ...] in the quotients when broken in half are the nines-complement of each half:
Ekidhikena Purvena From: Bharati Krishna Tirtha's Vedic mathematics#By one more than the one before
Concerning the number of decimal places shifted in the quotient per multiple of 1/19:
A factor of 2 in the numerator produces a shift of one decimal place to the right in the quotient.
The same phenomenon occurs with other primes in other bases, and the following table lists some of them, giving the prime, base, and magic total (derived from the formula base-1 x prime-1 / 2):
Rademacher, H. and Toeplitz, O. The Enjoyment of Mathematics: Selections from Mathematics for the Amateur. Princeton, NJ: Princeton University Press, pp. 158–160, 1957.
Weisstein, Eric W. "Midy's Theorem." From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/MidysTheorem.html