*** Welcome to piglix ***

Prime quadruplet


A prime quadruplet (sometimes called prime quadruple) is a set of four primes of the form {p, p+2, p+6, p+8}. This represents the closest possible grouping of four primes larger than 3, and is the only prime constellation of length 4.

The first eight prime quadruplets are:

{5, 7, 11, 13}, {11, 13, 17, 19}, {101, 103, 107, 109}, {191, 193, 197, 199}, {821, 823, 827, 829}, {1481, 1483, 1487, 1489}, {1871, 1873, 1877, 1879}, {2081, 2083, 2087, 2089} (sequence in the OEIS)

All prime quadruplets except {5, 7, 11, 13} are of the form {30n + 11, 30n + 13, 30n + 17, 30n + 19} for some integer n. (This structure is necessary to ensure that none of the four primes is divisible by 2, 3 or 5). A prime quadruplet of this form is also called a prime decade.

A prime quadruplet contains two pairs of twin primes or can be described as having two overlapping prime triplets.

It is not known if there are infinitely many prime quadruplets. A proof that there are infinitely many would imply the twin prime conjecture, but it is consistent with current knowledge that there may be infinitely many pairs of twin primes and only finitely many prime quadruplets. The number of prime quadruplets with n digits in base 10 for n = 2, 3, 4, ... is 1, 3, 7, 26, 128, 733, 3869, 23620, 152141, 1028789, 7188960, 51672312, 381226246, 2873279651 (sequence in the OEIS).


...
Wikipedia

...