*** Welcome to piglix ***

Pressurized heavy-water reactor


A pressurized heavy-water reactor (PHWR) is a nuclear reactor, commonly using unenriched natural uranium as its fuel, that uses heavy water (deuterium oxide D2O) as its coolant and neutron moderator. The heavy water coolant is kept under pressure, allowing it to be heated to higher temperatures without boiling, much as in a pressurized water reactor. While heavy water is significantly more expensive than ordinary light water, it creates greatly enhanced neutron economy, allowing the reactor to operate without fuel-enrichment facilities (offsetting the additional expense of the heavy water) and enhancing the ability of the reactor to make use of alternate fuel cycles.

The key to maintaining a nuclear reaction within a nuclear reactor is to use the neutrons released during fission to stimulate fission in other nuclei. With careful control over the geometry and reaction rates, this can lead to a self-sustaining chain reaction, a state known as "criticality".

Natural uranium consists of a mixture of various isotopes, primarily 238U and a much smaller amount (about 0.72% by weight) of 235U.238U can only be fissioned by neutrons that are relatively energetic, about 1 MeV or above. No amount of 238U can be made "critical" since it will tend to parasitically absorb more neutrons than it releases by the fission process. 235U, on the other hand, can support a self-sustained chain reaction, but due to the low natural abundance of 235U, natural uranium cannot achieve criticality by itself.


...
Wikipedia

...