*** Welcome to piglix ***

Pressurised Water Reactor


Pressurized water reactors (PWRs) constitute the large majority of the world's nuclear power plants (notable exceptions being the United Kingdom, Japan and Canada) and are one of three types of light water reactor (LWR), the other types being boiling water reactors (BWRs) and supercritical water reactors (SCWRs). In a PWR, the primary coolant (water) is pumped under high pressure to the reactor core where it is heated by the energy released by the fission of atoms. The heated water then flows to a steam generator where it transfers its thermal energy to a secondary system where steam is generated and flows to turbines which, in turn, spin an electric generator. In contrast to a boiling water reactor, pressure in the primary coolant loop prevents the water from boiling within the reactor. All LWRs use ordinary water as both coolant and neutron moderator.

PWRs were originally designed to serve as nuclear marine propulsion for nuclear submarines and were used in the original design of the second commercial power plant at Shippingport Atomic Power Station.

PWRs currently operating in the United States are considered Generation II reactors. Russia's VVER reactors are similar to U.S. PWRs. France operates many PWRs to generate the bulk of its electricity.

Several hundred PWRs are used for marine propulsion in aircraft carriers, nuclear submarines and ice breakers. In the US, they were originally designed at the Oak Ridge National Laboratory for use as a nuclear submarine power plant. Follow-on work was conducted by Westinghouse Bettis Atomic Power Laboratory. The first purely commercial nuclear power plant at Shippingport Atomic Power Station was originally designed as a pressurized water reactor (although the first power plant connected to the grid was at Calder Hall, UK), on insistence from Admiral Hyman G. Rickover that a viable commercial plant would include none of the "crazy thermodynamic cycles that everyone else wants to build."


...
Wikipedia

...