A pressure suit is a protective suit worn by high-altitude pilots who may fly at altitudes where the air pressure is too low for an unprotected person to survive, even breathing pure oxygen at positive pressure. Such suits may be either full-pressure (i.e. a space suit) or partial-pressure (as used by aircrew). Partial-pressure suits work by providing mechanical counter-pressure to assist breathing at altitude.
The region from sea level to around 3,000 m (10,000 ft) is known as the physiological-efficient zone. Oxygen levels are usually high enough for humans to function without supplemental oxygen and decompression sickness is rare.
The physiological-deficient zone extends from 3,600 m (12,000 ft) to about 15,000 m (50,000 ft). There is an increased risk of problems such as hypoxia, trapped-gas dysbarism (where gas trapped in the body expands), and evolved-gas dysbarism (where dissolved gases such as nitrogen may form in the tissues, i.e. decompression sickness). Above approximately 10,000 m (33,000 ft) oxygen-rich breathing mixture is required to approximate the oxygen available in the lower atmosphere, while above 12,000 m (40,000 ft) oxygen must be under positive pressure. Above 15,000 m (49,000 ft), respiration is not possible because the pressure at which the lungs excrete carbon dioxide (approximately 87 mmHg) exceeds outside air pressure. Above 19,000 m (62,000 ft), also known as the Armstrong limit, fluids in the throat and lungs will boil away. Generally, 100% oxygen is used to maintain an equivalent altitude of 3,000 m (10,000 ft).
Suits that only pressurize certain parts of the body, they can only provide protection up to a certain altitude. These do not provide protection for extended periods of time at low ambient pressure.
Suits that pressurize the entire body, these suits have no altitude limit.
The human body can briefly survive the hard vacuum of space unprotected, despite contrary depictions in much popular science fiction. Human flesh expands to about twice its size in such conditions, giving the visual effect of a body builder rather than an overfilled balloon. Consciousness is retained for up to 15 seconds as the effects of oxygen starvation set in. No snap freeze effect occurs because all heat must be lost through thermal radiation or the evaporation of liquids, and the blood does not boil because it remains pressurized within the body. The greatest danger is in attempting to hold one's breath before exposure, as the subsequent explosive decompression can damage the lungs. These effects have been confirmed through various accidents (including in very high altitude conditions, outer space and training vacuum chambers).