Predictive probability of success (PPOS) is a statistics concept commonly used in the pharmaceutical industry including by health authorities to support decision making. In clinical trials, PPOS is the probability of observing a success in the future based on existing data. It is one type of probability of success. A Bayesian means by which the PPOS can be determined is through integrating the data's likelihood over possible future responses (posterior distribution).
Conditional power is the probability of observing a statistically significance assuming the parameter equals to a specific value. More specifically, these parameters could be treatment and placebo event rates that could be fixed in future observations. This is a frequentist statistical power. Conditional power is often criticized for assuming the parameter equals to a specific value which is not known to be true. If the true value of the parameter is known, there is no need to do an experiment.
Predictive power addresses this issue assuming the parameter has a specific distribution. Predictive power is a Bayesian power. A parameter in Bayesian setting is a random variable. Predictive power is a function of a parameter(s), therefore predictive power is also a variable.
Both conditional power and predictive power use statistical significance as success criteria. However statistical significance is often not enough to define success. For example, health authorities often require the magnitude of treatment effect to be bigger than statistical significance to support a registration decision.
To address this issue, predictive power can be extended to the concept of PPOS. The success criteria for PPOS is not restricted to statistical significance. It can be something else such as clinical meaningful results. PPOS is conditional probability conditioned on a random variable, therefore it is also a random variable. The observed value is just a realization of the random variable.
Posterior probability of success is calculated from posterior distribution. PPOS is calculated from predictive distribution. Posterior distribution is the summary of uncertainties about the parameter. Predictive distribution has not only the uncertainty about parameter but also the uncertainty about estimating parameter using data. Posterior distribution and predictive distribution have same mean, but former has smaller variance.