*** Welcome to piglix ***

Pratt through truss

Truss bridge
RRTrussBridgeSideView.jpg
Truss bridge for a single track railway, converted to pedestrian use and pipeline support
Ancestor Beam bridge
Related None
Descendant Cantilever bridge, truss arch bridge, transporter bridge, lattice bridge
Carries Pedestrians, pipelines, automobiles, trucks, light rail, heavy rail
Span range Short to medium - not very long unless it is continuous
Material Timber, iron, steel, reinforced concrete, prestressed concrete
Movable May be movable - see movable bridge
Design effort Medium
Falsework required Depends upon length, materials, and degree of prefabrication

A truss bridge is a bridge whose load-bearing superstructure is composed of a truss, a structure of connected elements usually forming triangular units. The connected elements (typically straight) may be stressed from tension, compression, or sometimes both in response to dynamic loads. Truss bridges are one of the oldest types of modern bridges. The basic types of truss bridges shown in this article have simple designs which could be easily analyzed by 19th- and early 20th-century engineers. A truss bridge is economical to construct because it uses materials efficiently.

The nature of a truss allows the analysis of the structure using a few assumptions and the application of Newton's laws of motion according to the branch of physics known as statics. For purposes of analysis, trusses are assumed to be pin jointed where the straight components meet. This assumption means that members of the truss (chords, verticals and diagonals) will act only in tension or compression. A more complex analysis is required where rigid joints impose significant bending loads upon the elements, as in a Vierendeel truss.

In the bridge illustrated in the infobox at the top, vertical members are in tension, lower horizontal members in tension, shear, and bending, outer diagonal and top members are in compression, while the inner diagonals are in tension. The central vertical member stabilizes the upper compression member, preventing it from buckling. If the top member is sufficiently stiff then this vertical element may be eliminated. If the lower chord (a horizontal member of a truss) is sufficiently resistant to bending and shear, the outer vertical elements may be eliminated, but with additional strength added to other members in compensation. The ability to distribute the forces in various ways has led to a large variety of truss bridge types. Some types may be more advantageous when wood is employed for compression elements while other types may be easier to erect in particular site conditions, or when the balance between labor, machinery and material costs have certain favorable proportions.


...
Wikipedia

...