*** Welcome to piglix ***

Pozzolanic activity


The pozzolanic activity is a measure for the degree of reaction over time or the reaction rate between a pozzolan and Ca2+ or Ca(OH)2 in the presence of water. The rate of the pozzolanic reaction is dependent on the intrinsic characteristics of the pozzolan such as the specific surface area, the chemical composition and the active phase content.

Physical surface adsorption is not considered as being part of the pozzolanic activity, because no irreversible molecular bonds are formed in the process.

Prolonged grinding results in an increased pozzolanic activity by creating a larger specific surface area available for reaction. Moreover, grinding also creates crystallographic defects at and below the particle surface. The dissolution rate of the strained or partially disconnected silicate moieties is strongly enhanced. Even materials which are commonly not regarded to behave as a pozzolan, such as quartz, can become reactive once ground below a certain critical particle diameter.

The overall chemical composition of a pozzolan is considered as one of the parameters governing long-term performance (e.g. compressive strength) of the blended cement binder, ASTM C618 prescribes that a pozzolan should contain SiO2 + Al2O3 + Fe2O3 ≥ 70 wt.%. In case of a (quasi) one phase material such as blast-furnace slags the overall chemical composition can be considered as meaningful parameter, for multi-phase materials only a correlation between the pozzolanic activity and the chemistry of the active phases can be sought.

Many pozzolans consist of a heterogeneous mixture of phases of different pozzolanic activity. Obviously, the content in reactive phases is an important property determining the overall reactivity. In general, the pozzolanic activity of phases thermodynamically stable at ambient conditions is low when compared to on an equal specific surface basis to less thermodynamically stable phase assemblages. Volcanic ash deposits containing large amounts of volcanic glass or zeolites are more reactive than quartz sands or detrital clay minerals. In this respect, the thermodynamic driving force behnind the pozzolanic reaction serves as a rough indicator of the potential reactivity of a (alumino-)silicate material. Similarly, materials showing structural disorder such as glasses show higher pozzolanic activities than crystalline ordered compounds.


...
Wikipedia

...