*** Welcome to piglix ***

Power looms


A power loom is a mechanised loom powered by a line shaft, and was one of the key developments in the industrialization of weaving during the early Industrial Revolution. The first power loom was designed in 1784 by Edmund Cartwright and first built in 1785. It was refined over the next 47 years until a design by Kenworthy and Bullough made the operation completely automatic.

By 1850 there were 260,000 in operation in England. Fifty years later came the Northrop Loom that would replenish the shuttle when it was empty and this replaced the Lancashire loom.

The huge components of the loom are the warp beam, heddles, harnesses, shuttle, reed and takeup roll. In the loom, yarn processing includes shedding, picking, battening and taking-up operations.

With each weaving operation, the newly constructed fabric must be wound on a cloth beam. This process is called taking up. At the same time, the warp yarns must be let off or released from the warp beams. To become fully automatic, a loom needs a filling stop motion which will brake the loom, if the weft thread breaks.

Operation of weaving in a textile mill is undertaken by a specially trained operator known as a weaver. Weavers are expected to uphold high industry standards, and are tasked with monitoring anywhere from ten, to as many as thirty separate looms at any one time. During their operating shift, weavers will first utilize a wax pencil or crayon to sign their initials onto the cloth to mark a shift change, and then walk along the cloth side (front) of the looms they tend, gently touching the fabric as it comes from the reed. This is done to feel for any broken "picks" or filler thread. Should broken picks be detected, the weaver will disable the machine and undertake to correct the error, typically by replacing the bobbin of filler thread in as little time as possible. They are trained that, ideally, no machine should stop working for more than one minute, with faster turn around times being preferred.

Once the weaver has made their circuit of the front of the machines, they will then circle around to the back. At this point they will gently stroke their hand over the raised metal "tells" on the back of the machine. These tells, located over a special metal circuit, are held up by the tension of the thread coming from the warp. Should the warp thread be broken, the tells will drop and cause the machine to stop working. However, it is possible for them to become stuck in the upward position, and by doing so create problems in the weaving. By gently touching the tells, then, it is possible for the weaver to find tells which have become stuck in the up position, and correct the error. As with pick breaks, the weavers are trained to keep the machines running as much as possible; with speedy knot tying and correction being stressed. In this situation, they are expected to take less than a minute, with the mean ideal being ten to thirty seconds, to correct a break. The weaver also watches for warps that are about to run out, or problems in the warp itself which were not detected in the slashing process. Typically, weavers can expect to make several dozen circuits of their machines a night, with most of their time spent ensuring the quality of the cloth and the company standards of production.


...
Wikipedia

...