In linear algebra, a symmetric n{\displaystyle n} × n{\displaystyle n} real matrix M{\displaystyle M} is said to be positive definite if the scalar zTMz{\displaystyle z^{\mathrm {T} }Mz} is positive for every non-zero column vector z{\displaystyle z} of n{\displaystyle n} real numbers. Here zT{\displaystyle z^{\mathrm {T} }} denotes the transpose of z{\displaystyle z}.