In mathematics, and specifically in operator theory, a positive-definite function on a group relates the notions of positivity, in the context of Hilbert spaces, and algebraic groups. It can be viewed as a particular type of positive-definite kernel where the underlying set has the additional group structure.
Let G be a group, H be a complex Hilbert space, and L(H) be the bounded operators on H. A positive-definite function on G is a function F: G → L(H) that satisfies
for every function h: G → H with finite support (h takes non-zero values for only finitely many s).
In other words, a function F: G → L(H) is said to be a positive definite function if the kernel K: G × G → L(H) defined by K(s, t) = F(s−1t) is a positive-definite kernel.
A unitary representation is a unital homomorphism Φ: G → L(H) where Φ(s) is a unitary operator for all s. For such Φ, Φ(s−1) = Φ(s)*.
Positive-definite functions on G are intimately related to unitary representations of G. Every unitary representation of G gives rise to a family of positive-definite functions. Conversely, given a positive-definite function, one can define a unitary representation of G in a natural way.
Let Φ: G → L(H) be a unitary representation of G. If P ∈ L(H) is the projection onto a closed subspace H` of H. Then F(s) = P Φ(s) is a positive-definite function on G with values in L(H`). This can be shown readily:
for every h: G → H` with finite support. If G has a topology and Φ is weakly(resp. strongly) continuous, then clearly so is F.
On the other hand, consider now a positive-definite function F on G. A unitary representation of G can be obtained as follows. Let C00(G, H) be the family of functions h: G → H with finite support. The corresponding positive kernel K(s, t) = F(s−1t) defines a (possibly degenerate) inner product on C00(G, H). Let the resulting Hilbert space be denoted by V.