Portfolio optimization is the process of choosing the proportions of various assets to be held in a portfolio, in such a way as to make the portfolio better than any other according to some criterion. The criterion will combine, directly or indirectly, considerations of the expected value of the portfolio's rate of return as well as of the return's dispersion and possibly other measures of financial risk.
Modern portfolio theory, fathered by Harry Markowitz in the 1950s, assumes that an investor wants to maximize a portfolio's expected return contingent on any given amount of risk, with risk measured by the standard deviation of the portfolio's rate of return. For portfolios that meet this criterion, known as efficient portfolios, achieving a higher expected return requires taking on more risk, so investors are faced with a trade-off between risk and expected return. This risk-expected return relationship of efficient portfolios is graphically represented by a curve known as the efficient frontier. All efficient portfolios, each represented by a point on the efficient frontier, are well-diversified. For the specific formulas for efficient portfolios, see Portfolio separation in mean-variance analysis.
The portfolio optimization problem is most generally specified as a constrained utility-maximization problem (see Constrained optimization). Although portfolio utility functions can take many forms, common formulations define it as the expected portfolio return (net of transaction and financing costs) minus a cost of risk. The latter component, the cost of risk, is defined as the portfolio risk multiplied by a risk aversion parameter (or unit price of risk). Practitioners often add additional constraints to improve diversification and further limit risk. Examples of such constraints are asset, sector, and region portfolio weight limits.