In elementary geometry, a polytope is a geometric object with flat sides, that may exist in any general number of dimensions n as an n-dimensional polytope or n-polytope. For example, a two-dimensional polygon is a 2-polytope and a three-dimensional polyhedron is a 3-polytope.
Some theories further generalize the idea to include such objects as unbounded apeirotopes and tessellations, decompositions or tilings of curved manifolds including spherical polyhedra, and set-theoretic abstract polytopes.
Polytopes in more than three dimensions were first discovered by Ludwig Schläfli. The German term polytop was coined by the mathematician Reinhold Hoppe, and was introduced to English mathematicians as polytope by Alicia Boole Stott.
The term polytope is nowadays a broad term that covers a wide class of objects, and different definitions are attested in mathematical literature. Many of these definitions are not equivalent, resulting in different sets of objects being called polytopes. They represent different approaches to generalizing the convex polytopes to include other objects with similar properties.
The original approach broadly followed by Ludwig Schläfli, Thorold Gosset and others begins with the extension by analogy into four or more dimensions, of the idea of a polygon and polyhedron respectively in two and three dimensions.
Attempts to generalise the Euler characteristic of polyhedra to higher-dimensional polytopes led to the development of topology and the treatment of a decomposition or CW-complex as analogous to a polytope. In this approach, a polytope may be regarded as a tessellation or decomposition of some given manifold. An example of this approach defines a polytope as a set of points that admits a simplicial decomposition. In this definition, a polytope is the union of finitely many simplices, with the additional property that, for any two simplices that have a nonempty intersection, their intersection is a vertex, edge, or higher dimensional face of the two. However this definition does not allow star polytopes with interior structures, and so is restricted to certain areas of mathematics.