*** Welcome to piglix ***

Polyimides


Polyimide (sometimes abbreviated PI) is a polymer of imide monomers. Polyimides have been in mass production since 1955. With their high heat-resistance, polyimides enjoy diverse applications in roles demanding rugged organic materials, e.g. high temperature fuel cells, displays, and various military roles. A classic polyimide is Kapton, which is produced by condensation of pyromellitic dianhydride and 4,4'-oxydianiline.

According to the composition of their main chain, polyimides can be:

According to the type of interactions between the main chains, polyimides can be:

Several methods are possible to prepare polyimides, among them:

Dianhydrides used as precursors to these materials include pyromellitic dianhydride, benzoquinonetetracarboxylic dianhydride and naphthalene tetracarboxylic dianhydride. Common diamine building blocks include 4,4'-diaminodiphenyl ether ("DAPE"), meta-phenylenediamine ("MDA"), and 3,3-diaminodiphenylmethane. Hundreds of diamines and dianhydrides have been examined to tune the physical and especially the processing properties of these materials. These materials tend to be insoluble and have high softening temperatures, arising from charge-transfer interactions between the planar subunits.

Thermosetting polyimides are known for thermal stability, good chemical resistance, excellent mechanical properties, and characteristic orange/yellow color. Polyimides compounded with graphite or glass fiber reinforcements have flexural strengths of up to 50,000 psi (340 MPa) and flexural moduli of 3,000,000 psi (21,000 MPa). Thermoset polymer matrix polyimides exhibit very low creep and high tensile strength. These properties are maintained during continuous use to temperatures of up to 452 °C (846 °F) and for short excursions, as high as 704 °C (1,299 °F). Molded polyimide parts and laminates have very good heat resistance. Normal operating temperatures for such parts and laminates range from cryogenic to those exceeding 260 °C (500 °F). Polyimides are also inherently resistant to flame combustion and do not usually need to be mixed with flame retardants. Most carry a UL rating of VTM-0. Polyimide laminates have a flexural strength half life at 249 °C (480 °F) of 400 hours.


...
Wikipedia

...