*** Welcome to piglix ***

Polyhydroxyalkanoate


Polyhydroxyalkanoates or PHAs are linear polyesters produced in nature by bacterial fermentation of sugar or lipids. They are produced by the bacteria to store carbon and energy. More than 150 different monomers can be combined within this family to give materials with extremely different properties. These plastics are biodegradeable and are used in the production of bioplastics.

They can be either thermoplastic or elastomeric materials, with melting points ranging from 40 to 180 °C.

The mechanical properties and biocompatibility of PHA can also be changed by blending, modifying the surface or combining PHA with other polymers, enzymes and inorganic materials, making it possible for a wider range of applications.

To produce PHA, a culture of a micro-organism such as Cupriavidus necator is placed in a suitable medium and fed appropriate nutrients so that it multiplies rapidly. Once the population has reached a substantial level, the nutrient composition is changed to force the micro-organism to synthesize PHA. The yield of PHA obtained from the intracellular inclusions can be as high as 80% of the organism's dry weight.

The biosynthesis of PHA is usually caused by certain deficiency conditions (e.g. lack of macro elements such as phosphorus, nitrogen, trace elements, or lack of oxygen) and the excess supply of carbon sources.

Polyesters are deposited in the form of highly refractive granules in the cells. Depending upon the microorganism and the cultivation conditions, homo- or copolyesters with different hydroxyalkanic acids are generated. PHA granules are then recovered by disrupting the cells. Recombinants Bacillus subtilis str. pBE2C1 and Bacillus subtilis str. pBE2C1AB were used in production of polyhydroxyalkanoates (PHA) and it was shown that they could use malt waste as carbon source for lower cost of PHA production.


...
Wikipedia

...