*** Welcome to piglix ***

Polyelectrolyte adsorption


Adsorption of polyelectrolytes on solid substrates is a surface phenomenon where long-chained polymer molecules with charged groups (dubbed polyelectrolytes) bind to a surface that is charged in the opposite polarity. On the molecular level, the polymers do not actually bond to the surface, but tend to "stick" to the surface via intermolecular forces and the charges created by the dissociation of various side groups of the polymer. Because the polymer molecules are so long, they have a large amount of surface area with which to contact the surface and thus do not desorb as small molecules are likely to do. This means that adsorbed layers of polyelectrolytes form a very durable coating. Due to this important characteristic of polyelectrolyte layers they are used extensively in industry as flocculants, for solubilization, as supersorbers, antistatic agents, as oil recovery aids, as gelling aids in nutrition, additives in concrete, or for blood compatibility enhancement to name a few.

Models for the adsorption behavior of polyelectrolytes in solution to a solid surface are extremely situational. Vastly different behaviors are exhibited based on varying polyelectrolyte character and concentration, ionic strength of the solution, solid surface character, and pH, among several other factors. These complex models are specialized by application for certain parameters in order to create accurate models.

However, the general character of the process can be reasonably well modeled with a polyelectrolyte in solution, and an oppositely charged surface where no covalent interaction between the surface and chain occurs. This model for the adsorbed amount of polyelectrolyte at a charged surface is derived from DLVO theory, which models the interaction of charged particles in solution, and mean field theory, which simplifies systems for analysis.

Using a modified Poisson-Boltzmann equation and mean field equation, the concentration profile near a charged surface is solved numerically. The solution of these equations yields a simple relation for the adsorbed amount, Γ, based on electrolyte charge fraction, ρ, and bulk salt concentration, .


...
Wikipedia

...