Polyelectrolyte molecule: A macromolecule in which a substantial portion
of the constitutional units have ionizable or ionic groups, or both.
Polyelectrolytes are polymers whose repeating units bear an electrolyte group. Polycations and polyanions are polyelectrolytes. These groups dissociate in aqueous solutions (water), making the polymers charged. Polyelectrolyte properties are thus similar to both electrolytes (salts) and polymers (high molecular weight compounds) and are sometimes called polysalts. Like salts, their solutions are electrically conductive. Like polymers, their solutions are often viscous. Charged molecular chains, commonly present in soft matter systems, play a fundamental role in determining structure, stability and the interactions of various molecular assemblies. Theoretical approaches to describing their statistical properties differ profoundly from those of their electrically neutral counterparts, while technological and industrial fields exploit their unique properties. Many biological molecules are polyelectrolytes. For instance, polypeptides, glycosaminoglycans, and DNA are polyelectrolytes. Both natural and synthetic polyelectrolytes are used in a variety of industries.
Acids are classified as either weak or strong (and bases similarly may be either weak or strong). Similarly, polyelectrolytes can be divided into 'weak' and 'strong' types. A 'strong' polyelectrolyte is one which dissociates completely in solution for most reasonable pH values. A 'weak' polyelectrolyte, by contrast, has a dissociation constant (pKa or pKb) in the range of ~2 to ~10, meaning that it will be partially dissociated at intermediate pH. Thus, weak polyelectrolytes are not fully charged in solution, and moreover their fractional charge can be modified by changing the solution pH, counterion concentration, or ionic strength.