Polyacrylonitrile (PAN), also known as Creslan 61, is a synthetic, semicrystalline organic polymer resin, with the linear formula (C3H3N)n. Though it is thermoplastic, it does not melt under normal conditions. It degrades before melting. It melts above 300 °C if the heating rates are 50 degrees per minute or above. Almost all polyacrylonitrile resins are copolymers made from mixtures of monomers with acrylonitrile as the main component. It is a versatile polymer used to produce large variety of products including ultra filtration membranes, hollow fibers for reverse osmosis, fibers for textiles, oxidized PAN fibers. PAN fibers are the chemical precursor of high-quality carbon fiber. PAN is first thermally oxidized in air at 230 degrees to form an oxidized PAN fiber and then carbonized above 1000 degrees in inert atmosphere to make carbon fibers found in a variety of both high-tech and common daily applications such as civil and military aircraft primary and secondary structures, missiles, solid propellant rocket motors, pressure vessels, fishing rods, tennis rackets, badminton rackets & high-tech bicycles. It is a component repeat unit in several important copolymers, such as styrene-acrylonitrile (SAN) and acrylonitrile butadiene styrene (ABS) plastic.
C 67.91%, H 5.7%, N 26.4%
4.2 (1 MHz, 25 °C)
Polyacrylonitrile (PAN) was synthesized for the first time in 1930 by Dr. Hans Fikentscher und Dr. Claus Heuck in the Ludwigshafen works of then IG Farben. However as PAN is unfusible and not soluble in then common solvents the material was abandoned - similar as were the polymers of tetrafluoroethylene at Hoechst plant of IG Farben - and research was discontinued. It was not until 1931 when chemist Dr. Herbert Rein (1899-1955) in charge of polymer fiber chemistry at Bitterfeld plant of IG Farben obtained a sample of PAN while visiting the Ludwigshafen works. He did find pyridinium benzylchloride – an ionic liquid - would dissolve PAN. In 1942 Rein discovered an even better solvent for PAN dimethylformamide (DMF) and developed a technical process to process PAN to fibres and films. However war-time decline of infrastructure impeded commencing production. The first large scale production of PAN then branded as „Orlon“ was assumed by Du Pont in 1946 based on a patent filed exactly seven days after a nearly identical German claim (Ref. 7) was filed (sic!).