*** Welcome to piglix ***

Polyabolo


In recreational mathematics, a polyabolo (also known as a polytan) is a shape formed by gluing isosceles right triangles edge-to-edge, making a polyform with the isosceles right triangle as the base form. Polyabolos were introduced by Martin Gardner in his June 1967 "Mathematical Games column" in Scientific American.

The name polyabolo is a back formation from the juggling object 'diabolo', although the shape formed by joining two triangles at just one vertex is not a proper polyabolo. By false analogy, treating the di- in diabolo as meaning "two", polyaboloes with from 1 to 10 cells are called respectively monaboloes, diaboloes, triaboloes, tetraboloes, pentaboloes, hexaboloes, heptaboloes, octaboloes, enneaboloes, and decaboloes. The name polytan is derived from Henri Picciotto's name tetratan and alludes to the ancient Chinese amusement of tangrams.

There are two ways in which a square in a polyabolo can consist of two isosceles right triangles, but polyaboloes are considered equivalent if they have the same boundaries. The number of nonequivalent polyaboloes composed of 1, 2, 3, … triangles is 1, 3, 4, 14, 30, 107, 318, 1116, 3743, … (sequence in the OEIS).

Polyaboloes that are confined strictly to the plane and cannot be turned over may be termed one-sided. The number of one-sided polyaboloes composed of 1, 2, 3, … triangles is 1, 4, 6, 22, 56, 198, 624, 2182, 7448, … (sequence in the OEIS).

As for a polyomino, a polyabolo that can be neither turned over nor rotated may be termed fixed. A polyabolo with no symmetries (rotation or reflection) corresponds to 8 distinct fixed polyaboloes.

A non-simply connected polyabolo is one that has one or more holes in it. The smallest value of n for which an n-abolo is non-simply connected is 7.


...
Wikipedia

...