Polintons (also called Mavericks) are large DNA transposons which contain genes with homology to viral proteins and which are often found in eukaryotic genomes. They were first discovered in the mid-2000s and are the largest and most complex known DNA transposons. Polintons encode up to 10 individual proteins and derive their name from two key proteins, a DNA polymerase and a retroviral-like integrase.
A typical polinton is around 15-20 kilobase pairs in size, though examples have been described up to 40kb. Polintons encode up to 10 proteins, the key elements being the protein-primed type B DNA polymerase and the retroviral-like integrase from which they derive their name. Polintons are sometimes referred to as "self-synthesizing" transposons, because they encode the proteins necessary to replicate themselves. Most polintons also encode an adenoviral-like cysteine protease, an FtsK-like ATPase, and proteins with homology to the jelly-roll fold structure of viral capsid proteins. The presence of putative capsid proteins has prompted suggestions that polintons may be able to form virions under some conditions; however, this has not been demonstrated experimentally.
Polinton sequences contain terminal inverted repeats characteristic of transposable elements, usually on the order of 100-1000 base pairs. They also possess a 6bp target site duplication sequence at the insertion site.