*** Welcome to piglix ***

Polarized 3D


A polarized 3D system uses polarization glasses to create the illusion of three-dimensional images by restricting the light that reaches each eye (an example of stereoscopy).

To present stereoscopic images and films, two images are projected superimposed onto the same screen or display through different polarizing filters. The viewer wears low-cost eyeglasses which contain a pair of different polarizing filters. As each filter passes only that light which is similarly polarized and blocks the light polarized in the opposite direction, each eye sees a different image. This is used to produce a three-dimensional effect by projecting the same scene into both eyes, but depicted from slightly different perspectives. Multiple people can view the stereoscopic images at the same time.

To present a stereoscopic motion picture, two images are projected superimposed onto the same screen through orthogonal polarizing filters (Usually at 45 and 135 degrees). The viewer wears linearly polarized eyeglasses which also contain a pair of orthogonal polarizing filters oriented the same as the projector. As each filter only passes light which is similarly polarized and blocks the orthogonally polarized light, each eye only sees one of the projected images, and the 3D effect is achieved. Linearly polarized glasses require the viewer to keep his or her head level, as tilting of the viewing filters will cause the images of the left and right channels to bleed over to the opposite channel. This can make prolonged viewing uncomfortable as head movement is limited to maintain the 3D effect.

To present a stereoscopic motion picture, two images are projected superimposed onto the same screen through circular polarizing filters of opposite handedness. The viewer wears eyeglasses which contain a pair of analyzing filters (circular polarizers mounted in reverse) of opposite handedness. Light that is left-circularly polarized is blocked by the right-handed analyzer, while right-circularly polarized light is extinguished by the left-handed analyzer. The result is similar to that of steroscopic viewing using linearly polarized glasses, except the viewer can tilt his or her head and still maintain left/right separation (although stereoscopic image fusion will be lost due to the mismatch between the eye plane and the original camera plane).


...
Wikipedia

...