*** Welcome to piglix ***

Polarimeter


A polarimeter is a scientific instrument used to measure the angle of rotation caused by passing polarized light through an optically active substance.

Some chemical substances are optically active, and polarized (uni-directional) light will rotate either to the left (counter-clockwise) or right (clockwise) when passed through these substances. The amount by which the light is rotated is known as the angle of rotation. The angle of rotation is basically known as observed angle.

Polarization by reflection was discovered in 1808 by Étienne-Louis Malus (1775–1812). (See also Optical rotation#History). A nicol prism or a polaroid lens can be used to polarize the light.

The ratio, the purity, and the concentration of two enantiomers can be measured via polarimetry. Enantiomers are characterized by their property to rotate the plane of linear polarized light. Therefore, those compounds are called optically active and their property is referred to as optical rotation. Light sources such as a light bulb, a light-emitting diode (LED), or the sun emit electromagnetic waves at the frequency of visible light. Their electric field oscillates in all possible planes relative to their direction of propagation. In contrast to that, the waves of linear-polarized light oscillate in parallel planes.

If light encounters a polarizer, only the part of the light that oscillates in the defined plane of the polarizer may pass through. That plane is called the plane of polarization. The plane of polarization is turned by optically active compounds. According to the direction in which the light is rotated, the enantiomer is referred to as dextro-rotatory or levo-rotatory.

The optical activity of enantiomers is additive. If different enantiomers exist together in one solution, their optical activity adds up. That is why racemates are optically inactive, as they nullify their clockwise and counter clockwise optical activities. The optical rotation is proportional to the concentration of the optically active substances in solution. Polarimeters may therefore be applied for concentration measurements of enantiomer-pure samples. With a known concentration of a sample, polarimeters may also be applied to determine the specific rotation when characterizing a new substance. The specific rotation is a physical property and defined as the optical rotation α at a path length l of 1 dm, a concentration c of 1g/100 mL, a temperature T (usually 20 °C) and a light wavelength λ (usually sodium D line at 589.3 nm):


...
Wikipedia

...