*** Welcome to piglix ***

Point spectrum


In mathematics, particularly in functional analysis, the spectrum of a bounded operator is a generalisation of the set of eigenvalues of a matrix. Specifically, a complex number λ is said to be in the spectrum of a bounded linear operator T if λI − T is not invertible, where I is the identity operator. The study of spectra and related properties is known as spectral theory, which has numerous applications, most notably the mathematical formulation of quantum mechanics.

The spectrum of an operator on a finite-dimensional vector space is precisely the set of eigenvalues. However an operator on an infinite-dimensional space may have additional elements in its spectrum, and may have no eigenvalues. For example, consider the right shift operator R on the Hilbert space 2,

This has no eigenvalues, since if Rxx then by expanding this expression we see that x1=0, x2=0, etc. On the other hand, 0 is in the spectrum because the operator R − 0 (i.e. R itself) is not invertible: it is not surjective since any vector with non-zero first component is not in its range. In fact every bounded linear operator on a complex Banach space must have a non-empty spectrum.

The notion of spectrum extends to densely defined unbounded operators. In this case a complex number λ is said to be in the spectrum of such an operator T:DX (where D is dense in X) if there is no bounded inverse (λI − T)−1:XD. If T is a closed operator (which includes the case that T is a bounded operator), boundedness of such inverses follows automatically if the inverse exists at all.


...
Wikipedia

...