*** Welcome to piglix ***

Plutonium-244


No fission products
have a half-life
in the range of
100–210 k years ...

... nor beyond 15.7 M years

Legend for superscript symbols
₡  has thermal neutron capture cross section in the range of 8–50 barns
ƒ  fissile
metastable isomer
№  naturally occurring radioactive material (NORM)
þ  neutron poison (thermal neutron capture cross section greater than 3k barns)
†  range 4–97 y: Medium-lived fission product
‡  over 200,000 y: Long-lived fission product

Plutonium-244 (244Pu) is an isotope of plutonium that has a half-life of 80 million years. This is longer than any of the other isotopes of plutonium and longer than any other actinide isotope except for the three naturally abundant ones: uranium-235 (704 million years), uranium-238 (4.468 billion years), and thorium-232 (14.05 billion years).

Accurate measurements, beginning in the early 1970s, have detected primordial plutonium-244, making it the second-shortest-lived primordial nuclide after 146Sm. The amount of 244Pu in the pre-Solar nebula (4.57×109 years ago) was estimated as 0.008 of amount of 238U. As the age of the Earth is about 57 half-lives of 244Pu, the amount of plutonium-244 left should be very small; Hoffman et al. estimated its content in the rare-earth mineral bastnasite as c244=1.0×10−18 g/g, which corresponded to the content in the Earth crust as low as 3×10−25 g/g (i.e. the total mass of plutonium-244 in the Earth crust is about 9 g). Since plutonium-244 cannot be easily produced by natural neutron capture in the low neutron activity environment of uranium ores (see below), its presence cannot plausibly be explained by any other means than creation by r-process nucleosynthesis in supernovae. Plutonium-244 thus should be the second shortest-lived and the heaviest primordial isotope yet detected or theoretically predicted.


...
Wikipedia

...