*** Welcome to piglix ***

Pluronic


Poloxamers are nonionic triblock copolymers composed of a central hydrophobic chain of polyoxypropylene (poly(propylene oxide)) flanked by two hydrophilic chains of polyoxyethylene (poly(ethylene oxide)). The word "poloxamer" was coined by the inventor, Irving Schmolka, who received the patent for these materials in 1973. Poloxamers are also known by the trade names Synperonics,Pluronics, and Kolliphor.

Because the lengths of the polymer blocks can be customized, many different poloxamers exist that have slightly different properties. For the generic term "poloxamer", these copolymers are commonly named with the letter "P" (for poloxamer) followed by three digits: the first two digits x 100 give the approximate molecular mass of the polyoxypropylene core, and the last digit x 10 gives the percentage polyoxyethylene content (e.g. P407 = poloxamer with a polyoxypropylene molecular mass of 4,000 g/mol and a 70% polyoxyethylene content) . For the Pluronic and Synperonic tradenames, coding of these copolymers starts with a letter to define its physical form at room temperature (L = liquid, P = paste, F = flake (solid)) followed by two or three digits, The first digit (two digits in a three-digit number) in the numerical designation, multiplied by 300, indicates the approximate molecular weight of the hydrophobe; and the last digit x 10 gives the percentage polyoxyethylene content (e.g., L61 indicates a polyoxypropylene molecular mass of 1,800 g/mol and a 10% polyoxyethylene content). In the example given, poloxamer 181 (P181) = Pluronic L61 and Synperonic PE/L 61.

An important characteristic of poloxamer solutions is their temperature dependent self-assembling and thermo-gelling behavior. Concentrated aqueous solutions of poloxamers are liquid at low temperature and form a gel at higher temperature in a reversible process. The transitions that occur in these systems depend on the polymer composition (molecular weight and hydrophilic/hydrophobic molar ratio).

At low temperatures and concentrations (below the critical micelle temperature and critical micelle concentration) individual block copolymers (unimers) are present in solution. Above these values, aggregation of individual unimers occurs in a process called micellization. This aggregation is driven by the dehydration of the hydrophobic polyoxypropylene block that becomes progressively less soluble as the polymer concentration or temperature increases. The aggregation of several unimers occurs to minimize the interactions of the PPO blocks with the solvent. Thus, the core of the aggregates is made from the insoluble blocks (polyoxypropylene) while the soluble portion (polyoxyethylene) forms the shell of the micelles.


...
Wikipedia

...