*** Welcome to piglix ***

Plant embryogenesis


Plant embryogenesis is the process that produces a plant embryo from a fertilized ovule by asymmetric cell division and the differentiation of undifferentiated cells into tissues and organs. It occurs during seed development, when the single-celled zygote undergoes a programmed pattern of cell division resulting in a mature embryo. A similar process continues during the plant's life within the meristems of the stems and roots.

Embryogenesis occurs naturally as a result of sexual fertilization and the formation of the zygotic embryos. The embryo along with other cells from the mother plant develops into the seed or the next generation, which, after germination, grows into a new plant.

Embryogenesis may be divided up into two phases, the first involves morphogenetic events which form the basic cellular pattern for the development of the shoot-root body and the primary tissue layers; it also programs the regions of meristematic tissue formation. The second phase, or postembryonic development, involves the maturation of cells, which involves cell growth and the storage of macromolecules (such as oils, starches and proteins) required as a 'food and energy supply' during germination and seedling growth. Embryogenesis involves cell growth and division, cell differentiation and programmed cellular death. The zygotic embryo is formed following double fertilisation of the ovule, giving rise to two distinct structures: the plant embryo and the endosperm which together go on to develop into a seed. Seeds may also develop without fertilization, which is referred to as apomixis. Plant cells can also be induced to form embryos in plant tissue culture; such embryos are called somatic embryos and can be used to generate new plants from single cells.


...
Wikipedia

...