*** Welcome to piglix ***

Planktotrophic


Marine larval ecology is the study of the factors influencing the dispersing larval stage which is exhibited by many marine invertebrates and fishes. Marine organisms with a larval stage usually release large numbers of larvae into the water column, where the larvae develop and grow for a certain period of time before metamorphosing into adults.

Many marine larvae are capable of dispersing long distances from their release site, although determining their actual dispersal distance is a significant challenge due to their microscopic size and the lack of an appropriate larval tracking method. Understanding dispersal distance, however, is important for a variety of reasons, including fisheries management, effective marine reserve design, and control of invasive species.

Marine larval dispersal is one of the most important topics in marine ecology today. Most marine invertebrates and many fishes have evolved a life cycle involving a demersal adult and a pelagic larval stage or pelagic eggs that have the capacity to be transported long distances. There are several theories behind why these organisms have evolved this biphasic life history:

Pelagic larval dispersal, however, is not without its risks. For example, while larvae do avoid benthic predators, they are exposed to a whole new suite of predators in the water column.

Marine larval development can be broadly classified into three strategies: direct development, lecithotrophic, and planktotrophic.

Direct developers are characterized by a larval stage that has very low dispersal potential and usually looks like the adult form of the animal. These larvae are also known as “crawl-away larvae,” since numerous marine snails exhibit this type of development, and their larvae crawl away from the egg mass. Some species of frog also hatch this way.

Lecithotrophic larvae generally have greater dispersal potential than direct developers. Many fish species and some benthic invertebrates have lecithotrophic larvae, which are provided with a source of nutrition to use during their dispersal, usually a yolk sac. Though some lecithotrophic species are capable of feeding in the water column, many, such as tunicates, are not, and must settle before depleting their food source. Consequently, these species have short pelagic larval durations and do not disperse long distances.


...
Wikipedia

...