In astrophysics, accretion is the accumulation of particles into a massive object by gravitationally attracting more matter, typically gaseous matter, in an accretion disk. Most astronomical objects, such as galaxies, stars, and planets, are formed by accretion processes.
The idea proposed in the 19th century that Earth and the other terrestrial planets formed from meteoric material was developed in a quantitative way in 1969 by Viktor Safronov. He calculated, in detail, the different stages of terrestrial planet formation. Since then, the theory has been further developed using intensive numerical simulations to study planetesimal accumulation.
Stars form by the gravitational collapse of interstellar gas. Prior to collapse, this gas is mostly in the form of molecular clouds, such as the Orion Nebula. As the cloud collapses, losing potential energy, it heats up, gaining kinetic energy, and the conservation of angular momentum ensures that the cloud forms a flatted disk—the accretion disk.
A few hundred thousand years after the Big Bang, the Universe cooled to the point where atoms could form. As the Universe continued to expand and cool, the atoms lost enough kinetic energy, and dark matter coalesced sufficiently, to form protogalaxies. As further accretion occurred, galaxies formed. Indirect evidence is widespread. Galaxies grow through mergers and smooth gas accretion. Accretion also occurs inside galaxies, forming stars.