Planar chirality is the special case of chirality for two dimensions.
Most fundamentally, planar chirality is a mathematical term, finding use in chemistry, physics and related physical sciences, for example, in astronomy, optics and metamaterials. Recent occurrences in latter two fields are dominated by microwave applications and micro- and nanostructured planar interfaces for visible and infrared light.
This term is used in chemistry contexts, e.g., for a chiral molecule lacking an asymmetric carbon atom, but possessing two non-coplanar rings that are each dissymmetric and which cannot easily rotate about the chemical bond connecting them: 2,2'-dimethylbiphenyl is perhaps the simplest example of this case. Planar chirality is also exhibited by molecules like (E)-cyclooctene, some di- or poly-substituted metallocenes, and certain monosubstituted paracyclophanes. Nature rarely provides planar chiral molecules, cavicularin being an exception.
To assign the configuration of a planar chiral molecule, begin by selecting the pilot atom, which is the highest priority of the atoms that is not in the plane, but are directly attached to an atom in the plane. Next, assign the priority of three adjacent in-plane atoms, starting with the atom attached to the pilot atom as priority 1, and preferentially assigning in order of highest priority if there is a choice. When viewed from the side of the pilot atom, if the three atoms form a clockwise direction when followed in order of priority, the molecule is assigned as R, otherwise it is assigned as S.