Pituitary pars intermedia dysfunction (PPID), or equine Cushing's disease, is an endocrine disease affecting the pituitary gland of horses. It is most commonly seen in older animals, and is classically associated with the formation of a long, wavy coat (hirsutism) and chronic laminitis.
Unlike the human and canine forms of Cushing's disease, which most commonly affect the pars distalis region of the pituitary gland, equine Cushing's disease is a result of adenoma formation in the pars intermedia. This adenoma then secretes excessive amounts of normal products, leading to clinical signs.
The pituitary gland consists of three parts: the pars nervosa, the pars intermedia, and the pars distalis. The most critical structure to PPID, the pars intermedia, is regulated by the hypothalamus. The neurons of the hypothalamus innervate cells known as melanotropes within the pars intermedia, releasing dopamine which then binds to dopamine receptors on the melanotropes. Activation of these dopamine receptors leads to the inhibition of proopiomelanocortin (POMC) production from these cells.
In PPID-affected horses, dopamine is not produced from these neurons, leading to dopamine levels about 10% of the level normally found in the pars intermedia. This is thought to be due to neurodegeneration of the neurons, secondary to free radicle formation and oxidative stress. Without regulation from dopamine, the pars intermedia develops hyperplasia and adenoma formation, leading to gross enlargement and excessive production of POMC. These adenomas also have the potential to compress the hypothalamus and optic chiasm.
POMC produced from the melanotropes of the pars intermedia is cleaved into adrenocorticotropic hormone (ACTH) and β-lipotropin (β-LPH). The majority of ACTH is then cleaved into α-MSH and corticotropin-like intermediate peptide (CLIP). CLIP is thought to have an influence on subsequent insulin resistance that can be seen in PPID horses.