*** Welcome to piglix ***

Pitch-shifting


Time stretching is the process of changing the speed or duration of an audio signal without affecting its pitch.

Pitch scaling or pitch shifting is the opposite: the process of changing the pitch without affecting the speed. Similar methods can change speed, pitch, or both at once, in a time-varying way.

These processes are used, for instance, to match the pitches and tempos of two pre-recorded clips for mixing when the clips cannot be reperformed or resampled. They are also used to create effects such as increasing the range of an instrument (like pitch shifting a guitar down an octave).

The simplest way to change the duration or pitch of a digital audio clip is through sample rate conversion. This is a mathematical operation that effectively rebuilds a continuous waveform from its samples and then samples that waveform again at a different rate. When the new samples are played at the original sampling frequency, the audio clip sounds faster or slower. Unfortunately, the frequencies in the sample are always scaled at the same rate as the speed, transposing its perceived pitch up or down in the process. In other words, slowing down the recording lowers the pitch, speeding it up raises the pitch. This is analogous to speeding up or slowing down an analogue recording, like a phonograph record or tape, creating the Chipmunk effect. Using this method the two effects cannot be separated. A drum track containing no pitched instruments can be moderately sample rate converted for tempo without adverse effects, but a pitched track cannot.

Rabiner and Schafer in 1978 put forth an alternate solution that works in the time domain: attempt to find the period (or equivalently the fundamental frequency) of a given section of the wave using some pitch detection algorithm (commonly the peak of the signal's , or sometimes cepstral processing), and crossfade one period into another.


...
Wikipedia

...