Pilot-induced oscillations, as defined by MIL-HDBK-1797A, are sustained or uncontrollable oscillations resulting from efforts of the pilot to control the aircraft and occurs when the pilot of an aircraft inadvertently commands an often increasing series of corrections in opposite directions, each an attempt to cover the aircraft's reaction to the previous input with an overcorrection in the opposite direction. An aircraft in such a condition can appear to be "porpoising" switching between upward and downward directions. As such it is a coupling of the frequency of the pilot's inputs and the aircraft's own frequency. During flight test, pilot-induced oscillation is one of the handling qualities factors that is analyzed, with the aircraft being graded by an established scale (chart at right). In order to avoid any assumption that oscillation is necessarily the fault of the pilot, new terms have been suggested to replace pilot-induced oscillation. These include aircraft-pilot coupling, pilot–in-the-loop oscillations and pilot-assisted (or augmented) oscillations.
In a controls sense, the oscillation is the result of reduced phase margin induced by the lag of the pilot's response. The problem has been mitigated in some cases by adding a latency term to the instruments - for example, to cause the climb rate indication to indicate not only reflect the current climb rate, but also be sensitive to the rate of change of the climb rate.
The physics of flight make such oscillations more probable for pilots than for automobile drivers. An attempt to cause the aircraft to climb, say, by applying up-elevator, will also result in a reduction in airspeed.
Another factor is the response rate of flight instruments in comparison to the response rate of the aircraft itself. An increase in power will not result in an immediate increase in airspeed. An increase in climb rate will not show up immediately on the vertical speed indicator.
A pilot aiming for a 500 foot per minute descent, for example, may find himself descending too rapidly. He begins to apply up elevator until the vertical speed indicator shows 500 feet per minute. However, because the vertical speed indicator lags the actual vertical speed, the pilot is actually descending at much less than 500 feet per minute. The pilot then begins applying down elevator until the vertical speed indicator reads 500 feet per minute, starting the cycle over. It's harder than it might seem to stabilize the vertical speed because the airspeed also constantly changes.