Pierre Robin Sequence | |
---|---|
Classification and external resources | |
Specialty | medical genetics |
ICD-10 | Q87.0 |
ICD-9-CM | 756.0 |
OMIM | 261800 |
DiseasesDB | 29413 |
MedlinePlus | 001607 |
eMedicine | ped/2680 ent/150 |
Patient UK | Pierre Robin syndrome |
MeSH | D010855 |
Pierre Robin syndrome (abbreviated to PRS, and also known as Pierre Robin sequence, Pierre Robin malformation, Pierre Robin anomaly or Pierre Robin anomalad) is a congenital condition of facial abnormalities in humans. PRS is a sequence, i.e. a chain of certain developmental malformations, one entailing the next. The three main features are cleft palate, retrognathia (abnormal positioning of the jaw or mandible) and glossoptosis (airway obstruction caused by backwards displacement of the tongue base). A genetic cause to PRS was recently identified. Pierre Robin sequence may be caused by genetic anomalies at chromosomes 2, 11, or 17.
PRS is characterized by an unusually small mandible (micrognathia), posterior displacement or retraction of the tongue (glossoptosis), and upper airway obstruction. Incomplete closure of the roof of the mouth (cleft palate) is present in the majority of patients, and is commonly U-shaped.
It is not known how this abnormality occurs in infants, but one theory is that, at some time during the stage of the formation of the bones of the fetus, the tip of the jaw (mandible) becomes 'stuck' in the point where each of the collar bones (clavicle) meet (the sternum), effectively preventing the jaw bones from growing. It is thought that, at about 12 to 14 weeks gestation, when the fetus begins to move, the movement of the head causes the jaw to "pop out' of the collar bones. From this time on, the jaw of the fetus grows as it would normally, with the result that, when born, the jaw of the baby is much smaller (micrognathia) than it would have been with normal development, although it does continue to grow at a normal rate until the child reaches maturity.
However, association with gene loci 2q24.1-33.3, 4q32-qter, 11q21-23.1, and 17q21-24.3 has been found. Recent studies have indicated that genetic dysregulation of SOX9 gene prevents the SOX9 protein from properly controlling the development of facial structures, which leads to isolated PRS. Similarly, KCNJ2 gene also has a role to play. Overlap with certain other genetic syndromes like Patau syndrome has also been found.