Phytoseiidae | |
---|---|
Scientific classification | |
Kingdom: | Animalia |
Phylum: | Arthropoda |
Class: | Arachnida |
Subclass: | Acari |
Superorder: | Parasitiformes |
Order: | Mesostigmata |
Family: |
Phytoseiidae Berlese, 1916 |
Subfamilies | |
Amblyseiinae Muma, 1961 |
|
Diversity | |
About 70 genera, 2,000 species |
Amblyseiinae Muma, 1961
Phytoseiinae Berlese, 1916
Typhlodrominae Scheuten, 1857
The Phytoseiidae are a family of mites which feed on thrips and other mite species. They are often used as a biological control agent for managing mite pests. Because of their usefulness as biological control agents, interest in phytoseiids has steadily increased over the past century. In 1950, there were 34 known species. Today, there are 2,731 documented species.
The Phytoseiidae family contains these subfamilies:
Phytoseiids are best known as predators of small arthropods and nematodes, but many species are also known to feed on fungi, plant exudates, and pollen.
Scientists have proposed classifications of the Phytoseiidae based on their food sources. In the most current version, developed in 2013, phytoseiids are grouped into four types.
Phytoseiids are an important natural predator of the spider mite. When phytoseiid populations decline, spider mites can severely damage commercial crops. Since World War II, spider mite (tetranychid) populations have increased due to the use of synthetic pesticides. The reason pesticides have increased spider mite populations remains mysterious to scientists, but it has spurred an interest in phytoseiids as biological control agents. So far, research has shown that phytoseiids are effective control agents in their native environments, but introducing them to foreign populations has not been successful in reducing the numbers of spider mites.
Phytoseiid species that act as biological control agents are influenced by the availability of their prey. Phytoseiids can postpone or delay egg production during periods when prey are scarce. This allows them to have a longer lifespan and likely serves as an adaptation to environments where prey availability is variable. In addition to being able to delay reproduction, phytoseiids are also capable of rapid reproduction when prey is readily available. They reproduce more when prey availability is high, which increases their effectiveness as biological control agents. When prey availability increases, females lay more eggs, and more healthy offspring are produced during reproductive periods. In addition, when prey availability increases, the Phytoseiidae kill more prey during reproductive cycles, and the ratio of prey killed to eggs laid increases.