*** Welcome to piglix ***

Phosphatidylinositol 5-phosphate


Phosphatidylinositol 5-phosphate (PtdIns5P) is a phosphoinositide, one of the phosphorylated derivatives of phosphatidylinositol (PtdIns), that are well-established membrane-anchored regulatory molecules. Phosphoinositides participate in signaling events that control cytoskeletal dynamics, intracellular membrane trafficking, cell proliferation and many other cellular functions. Generally, phosphoinositides transduce signals by recruiting specific phosphoinositide-binding proteins to intracellular membranes.

Phosphatidylinositol 5-phosphate is one of the 7 known cellular phosphoinositides with less understood functions. It is phosphorylated on position D-5 of the inositol head group, which is attached via phosphodiester linkage to diacylglycerol (with varying chemical composition of the acyl chains, frequently 1-stearoyl-2-arachidonoyl chain). In quiescent cells, on average, PtdIns5P is of similar or higher abundance as compared to PtdIns3P and ~20-100-fold below the levels of PtdIns4P (Phosphatidylinositol 4-phosphate and PtdIns(4,5)P2 (Phosphatidylinositol 4,5-bisphosphate). Notably, steady-state PtdIns5P levels are more than 5-fold higher than those of PtdIns(3,5)P2.

PtdIns5P was first demonstrated by HPLC (high pressure liquid chromatography) in mouse fibroblasts as a substrate for PtdIns(4,5)P2 synthesis by type II PIP kinases (1-phosphatidylinositol-5-phosphate 4-kinase). In many cell types, however, PtdIns5P is not detected by HPLC due to technical limitations associated with its poor separation from the abundant PtdIns4P. Rather, PtdIns5P is measured by the "mass assay", where PtdIns5P (as a part of the extracted cellular lipids) is converted in vitro by purified PtdIns5P 4-kinase to PtdIns(4,5)P2 that is subsequently quantified.

Based on studies with the mass assay and an improved HPLC technique, PtdIns5P is detected in all studied mammalian cells. Most of the cellular PtdIns5P is found on cytoplasmic membranes whereas a smaller fraction resides in the nucleus. The cytoplasmic and nuclear pools have distinct functions and regulation.

Cellular PtdIns5P could be produced by D-5-phosphorylation of phosphatidylinositol or by dephosphorylation of PtdIns(3,5P)2 or PtdIns(4,5)P2. Interestingly, each of these possibilities is experimentally supported. PtdIns5P is synthesized in vitro by PIKfyve, an enzyme principally responsible for PtdIns(3,5)P2 production, as well as by [PIP5K]s. A major role for PIKfyve in synthesis of cellular PtdIns5P is suggested by data for reduced PtdIns5P mass levels upon heterologous overexpression of the enzymatically inactive PIKfyve point-mutant (PIKfyveK1831E) and PIKfyve silencing by small interfering RNAs. Such a role is reinforced by data in transgenic fibroblasts with one genetically disrupted PIKfyve allele, demonstrating equal reduction of steady-state levels of PtdIns5P and PtdIns(3,5)P2.


...
Wikipedia

...