The Philippine Fault System is a major inter-related system of faults throughout the whole of the Philippine Archipelago, primarily caused by tectonic forces compressing the Philippines into what geophysicists call the Philippine Mobile Belt.
The Philippine Mobile Belt is composed of a large number of accretionary blocks and terranes. These terranes are long and narrow like the Zambales ophiolites which is at least 400 km long and 50 km wide. The strips generally run north-south and the zones of convergence are usually demarcated by fault lines. The Philippine Mobile Belt is compressed on the west by the Eurasian Plate and two arms of the Sunda Plate, and on the east by the Philippine Sea Plate. These tectonic plates have compressed and lifted parts of the Philippines causing extensive faulting, primarily on a north-south axis. All faults in the Philippines are inter-related by the tectonic forces of the Philippine Mobile Belt, or its tectonic induced volcanism. A more complete understanding can be gained by viewing the faults in the Philippines as an inter-related Philippine Fault System.
The Philippine Fault Zone (PFZ) extends 1200 km across the Philippine archipelago behind the convergent boundary of the Philippine Trench and the subduction of the Philippine Sea Plate. This left-lateral strike-slip fault extends NW-SE (N30 – 40 W) accommodating the lateral oblique motion of the subducting Philippine Sea Plate with respect to the Philippine Trench. It extends from Davao Gulf in the south, bisects the Caraga region at the Agusan River basin, crosses to Leyte and Masbate islands, and traverses Quezon province in eastern Luzon before passing through Nueva Ecija up to the Ilocos region in northwest Luzon. The northern and southern extensions of the PFZ are characterized by branching faults due to brittle terminations. These horsetail faults are indicative of the lateral propagation and further development of the PFZ. The fault’s current activity can be observed in Holocene sandstone outcrops on the Mati and Davao Oriental islands. The fault experiences a slip rate of approximately 2-2.5 cm/year.